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Coulomb System Equivalent to the Energy Spectrum 
of the Calogero-Sutherland-Moser (CSM) Model 
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The purpose of this paper is to prove an equivalence between the energy spec- 
trum of the CSM model and the electrostatic energy of a one-dimensional lattice 
of quantized point charges interacting via Coulomb potential with Dirichlet 
boundary conditions. 
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1. I N T R O D U C T I O N  

The CSM model is a one-dimensional soluble system of N particles inter- 
acting pairwise via Calogero's inverse quadratic potential t~l and put on a 
ring. Sutherland 12) introduced it first in the quantum case and solved the 
associated Schr6dinger equation. Moser ~3) and Ujino et al. 14~ proved the 
complete integrability of the model in the classical and quantum case 
respectively. A systematic method to construct the periodic eigenfunctions 
of the system has been exposed by Sogo tS) while Forrester ~6) has shown, 
among other results concerning groundstate correlation functions, that 
these solutions can be expressed as Jack polynomials. Current investigations 
e.g., by Lesageet  al. 17) and by Serban et al. ~8~ concern dynamical correlation 
functions calculated for specific values of the coupling parameter, both 
integer t7~ and rational ones, ~8) the latter providing good models for studying 
fractional statistics. 
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In our work we have been primarily interested in the case of repulsive 
interactions although attractive ones are, to the extent discussed by 
Sutherland (2) also admissible. The potential energy being a convex function 
of the inter-particle separations in our case, we have investigated the Lat- 
tice Dynamics of the model and looked for an interpretation of its N - 2  
non trivial constants of motion in the limit of small excitation energies, tg~ 
We have also been able to exhibit the occurence of "phonon energies" in 
the strong coupling limit of Sutherland's energy spectrum, t~~ 

Born out of these findings we present here still another interpretation 
of the energy spectrum, namely that of the electrostatic energy of a one- 
dimensional lattice of length N with quantized point charges interacting via 
the one dimensional Coulomb potential subject to Dirichlet boundary con- 
ditions. An advantage of this interpretation is that it is also valid in the 
case of attractive interactions. As to the quantum statistical aspects of the 
model, they have sofar not been considered in our papers. 

In Section 2 we recall some basic facts concerning the hamiltonian of 
the model, its eigenvalues and eigenfunctions and also concerning its 
Lattice Statics and Dynamics. Furthermore, we indicate how some of the 
results obtained in ref. 10 can be easily reproduced. 

In Section 3 we present the electrostatic analog of Sutherland's energy 
spectrum which, we believe, will shed some new light on the physics of the 
CSM model. 

2. THE CSM MODEL 

With xj,  j =  1 .... , N standing for the coordinate of the j th  particle 
of mass m =  1 moving on a ring of circumference=z c, with h =  1 and 
(1/i)(O/axj) denoting the corresponding momentum operator and with 
g2(sin x)-2 = g2 y ,  (x + nn) -2 being the periodized Calogero potential, 
the hamiltonian operator becomes 

1 0 2 g2 
= - -  E ~.-~.2 + E (1) 

H 2 l <.j<~N U.~,j I <~i<j~N sin2(xi-- x j)" 

It is convenient to recall here some facts concerning the Lattice Statics and 
Dynamics of the model. We disregard here the translational energy of the 
system. Let 

--g+ J-- j - 1 , . . . , N  (2) 
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be the reference and equilibrium position of the j t h  particle of an order 
configuration such that -re~2 < Xl <~ x2 <~ ... <~ XN<~ n/2 and let u j=  xj--  x ~ 
be the displacement from this position. The hamiltonian becomes: 

1 0 2 g2 
- -  z z ,3, 

H= 2 I < ~ j < ~ N  l < ~ i < j < ~ N  sin 2 . ~ _ U i _ _ U j  

For the remainder of this paper we need only to know the static potential 
energy and the hamiltonian in the harmonic approximation. For the static 
potential energy we have t9) 

g2 N 2 U ~ = g2 iV( - 1) (4) 

V~ sin z / m \  6 " 

In the harmonic approximation we have, for the square of the angular 
frequency co~, 

2 con= g24 

z~t 
1 + 2 COS 2 -  

zmt N 
sin 2 _ -- g24n 2(N - n ) 2 ( 5 ) 

I <~ t <~ N - -  I N sin4 x__ft 
N 

i.e. 

co,, = g 2n(N-n)  n = 1,..., N -  1. (6) 

Introducing the standard phonon raising and lowering operators a~ ,  a.  
through 

luoJl 1 (2iNn) I~2~~(a"+a~r 

1 < . n < . N - -  1 (_,On ( a  n _ a N _  n 

(7) 

results in 

Hh= ~ g2n(N--n)(2+a+a,,  ). (8) 
l < ~ n < . N - - I  

822/89/I-2-5 
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At this point we remark that the N dependance of the zero point energy, 
namely 

eph, o = Y', g n ( N _  n) = g N(N2 - 1 )  
6 (9) 

l < ~ n < ~ N - - I  

is the same as that of Vo and also, as we shall see shortly, the same as that 
of the groundstate energy of the CSM model. 

Let us come back to the original model and let E(k) and @k (k defined 
below) be the eigenvalues and the eigenfunctions of H@k = E(k)@k with 
the periodic boundary conditions 

~'k(X,,..., Xj + ~,..., XN) = ~'k(X~,..., Xj,..., XN). (10) 

The groundstate function 

~'o = I-[ I s in (x , -  xj)l a (11) 
l <~ i < j <~ N 

is a solution of the Schr6dinger equation if 2 ( 2 -  1)= g2 with the positive 
root only 2 = 1/2 + (1/4 + g2)1/2 being acceptable. The corresponding 
groundstate energy is 

Eo = 2 2 N ( N 2 -  1 ) 
6 " (12) 

As pointed out in ref. 10, we observe that, with ,~2.~ g2+ 2, We have the 
remarkable identity 

2 
Eo = Vo + -  eph, o. (13) 

g 

Consider now the excited states. There are indexed by sets of ordered 
quantum numbers k = (k~,..., kN) where kl >t k2 >f . . .  >f kN and kj ~ Z, 
j =  1,...,N. The corresponding eigenfunctions are of the form @k=~,O~k 
and their construction as linear combinations of Laurent polynomials in 
the variables exp(2ikjxt) is given by Sogo. ~5) Two different methods have 
been used by Sutherland t2~ to obtain the eigenvalues E(k) namely one, 
giving E ( k ) -  Eo as diagonal elements of a triangular matrix and, the other 
one, in applying the asymptotic Bethe Ansatz. These eigenvalues read 
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E ( k ) = E o + 2  Z 2(k i -k j )+2 Z k~ 
1 ~ < i < j ~ < N  1 < j ~ < N  

= 22 N(N2-1)  
+ 2  Z 2 ( U + l - Z j ) k j + 2  ~ k 2 

6 I < ~ j < ~ N  I ~ j < ~ N  

I <~j<~N 2 kj 

the last equality resulting from a non-trivial identity which is that 

2 ~ ( N + I )  2 
- ( N + I ) j +  

I<~ j<~N +l) - N ( N + I )  N+I  (N+I )+  
2 

N(N 2 -  1) 

6 

(14) 

(15) 

(16) 

(17) 

and which proves that the two methods give the same result. 
It seems appropriate to make contact here with the content of ref. 10 in 

showing that the identity 1,3) can be extended to all terms of E(k) linear in 2. 
To do so we recall that new quantum numbers had been introduced through 

ks-kj+l=vi>_.O j =  1,..., N -  1 

and also the total momentum K = Zki. Then it turned out that 

(18) 

2 Z 2 ( N + l - 2 f ) k j =  ~ 22n(N-n)  v,,. (19) 
1 <~j<~N 1 <~n<~N-- I  

This result proved the conjecture that in the strong coupling limit where 
2 = g + 0( 1 ), the CSM energy spectrum is dominated by Vo + eph and that, 
in general, the terms of E(k) which are quadratic and linear in 2 are 
reproduced by Vo + 2eph/g. It is in calculating the remaining purely kinetic 
energy terms of E(k) which became a sylmaaetric bilinear form in the quan- 
tum numbers vn that the kernel discussed in the next section was found. 

3. AN ELECTROSTATIC  A N A L O G  

Let us introduce the new variables 

Jr i 1 -b ki---- j= 1,. N (20) 
p j = 2  2 - N " 
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and the total momentum K through 

P =  y' 2 ( N 2  l ~ - j ) + k j =  y' k~=K. (21) 
I<~j<~N I<~j<~N 

The energy spectrum becomes accordingly 

K 2 
E ( K , p ) = 2 - - ~ - + 2  ~ p~. (22) 

l~ i~N 

The idea is now to consider pj as an electric field acting on the j t h  site 
of a one-dimensional lattice of length N. If so there exist an electrostatic 
potential, say q~j, with pj as it discretized gradient and also charges which 
are the discretized divergence of this electric field. Thus we set 

9j-q~j=pj  j =  1,..., N. (23) 

Since ZI 6j6NPj =0, we have ~0N-- ~00 = 0  and, without loss of generality, 
we can choose q~N = q~0 = 0. This corresponds to Dirichlet boundary condi- 
tions. We have next the discretized Poisson equations 

2q~l --(/02 = P l  - - P 2  = 2 + kl - k 2  

--q~j-l + 2q~j--q~j+ 1 =Pj--Pj-1 = 2 + k j - k j + l  j =  2,..., N -  2 

- -9N-2  + 2CPN_ l = PN_ l-- PN= 2 + k N - l - - K N  

(24) 

and the "charges" 

p j = 2 + k j - k j + ,  i =  1,..., N -  1 (25) 

are >0  since 2 > 0. We recognize here the non-negative quantum number 
vj introduced in ref. 10 namely k j - k j + l  = v i for j = 1,..., N -  1. Now, elec- 
trostatics tells us that, with A o. being the discretized Laplace operator with 
Diriehlet boundary conditions which can be red from Eq. 24, we have the 
three equivalent forms 

2 
E P j = - -  E ZIUCpi~Oj= ~ GmnPmP. (26) 

l <~i<.N l ~i,j<~N l <~m,n<.N 

where 

Gm,,= (zl- ')m.= Min(m, n) - ~  
mn 1 sin ( - ~ )  sin (~ -~)  

= ~ N -  1 4 sin 2(~t/2N) N 16t<<.N--1  

(27) 
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is the kernel or Green function of the one-dimensional Coulomb potential 
with Dirichlet boundary conditions and the quantized "charges" p, are 
given 

p , ,=2+v , ,  n = 1,..., N -  1. (28) 

The result is consequently that 

K 2 

E(k) = E(K, v) = 2 --~ + 2 E Gmn(2-l"'Vm)('~'-kvn)" (29) 
l < ~ m , n < ~ N - - I  

It remains to check that this equality holds. We have firstly that the purely 
kinetic terms are indeed those of Eq. (53) in ref. 10, secondly that the linear 
term in 2, namely 

become with 

42 ~ G.,.v. 
1 <~m, n < ~ N - -  1 

i.e., 

4 ~ Gmn-4 E 
l < ~ m < . N - -  I l < ~ m < ~ N - -  I 

(min(m, n ) - - ~ )  

= 4 (  ~ m +  ~ m-- ~ m T )  
1 <~m<~n n +  1 < ~ m < ~ N - -  1 1 < ~ m < ~ N - -  1 

= 2 n ( n  + 1 ) + 4 n (  N - 1 - n )  - 2 n ( N  - n ) 

= 2 r e ( N - n ) ,  

42 Z Gmn v,, = 2 Z 2 n ( N -  n) v,, = 2,;I, 
l < ~ m , n < ~ N - - I  n I < ~ j < ~ N - - I  

( N + l - 2j) kj 

according to Eq. (23). Thirdly and obviously we have that 

2 Z Gin.= 
l < ~ m , n < . . N - - I  l < ~ n < ~ N - - I  

m ( N - m ) =  ~ N ( N 2 - 1 )  

according to Eq. (9). 
The analysis presented in ref. 10 and in this paper have revealed a few 

remarkable identities. We believe that they are not fortuitous and that a 
deeper understanding of their origin will shed new light on some interesting 
physical and mathematical properties of the CSM model. 
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